博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
概率论快速学习03:概率公理补充
阅读量:6969 次
发布时间:2019-06-27

本文共 2731 字,大约阅读时间需要 9 分钟。

hot3.png

原创地址:     (泥沙砖瓦浆木匠),需要转载的,保留下! Thanks

  “应注意到一个析取命题的对立命题是由该析取命题各部分的对立内容构成的一个合取命题” ——奥卡姆的威廉著,《逻辑学论文》


Written In The Font

  I  like maths when i was young,but I need to record them. So I am writing with some demos of Python

 

Content

  If two events, A and B are independent then the joint probability is

   P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B),\,

          Durchschnitt.png                                         

  •  

For example, if two coins are flipped the chance of both being heads is

\tfrac{1}{2}\times\tfrac{1}{2} = \tfrac{1}{4}.

 

In Python

A = set([1,2,3,4,5])B = set([2,4,3,5,6])C = set([4,6,7,4,2,1])print(A & B & C)

Output:

{2, 4}

# & find the objects  the same in Set


         

   If either event A or event B or both events occur on a single performance of an experiment this is called the union of the events A and B denoted as:

   P(A \cup B).

  If two events are mutually exclusive then the probability of either occurring is

  P(A\mbox{ or }B) =  P(A \cup B)= P(A) + P(B).

            Vereinigung.png

  •  

For example, the chance of rolling a 1 or 2 on a six-sided die is

 P(1\mbox{ or }2) = P(1) + P(2) = \tfrac{1}{6} + \tfrac{1}{6} = \tfrac{1}{3}.

 

In Python

A = set([1,2,3,4,5])B = set([2,4,3,5,6])C = set([4,6,7,4,2,1])print(A | B | C)

Output:

{1, 2, 3, 4, 5, 6, 7}

# | find all the objects the set has


  If the events are not mutually exclusive then

  P\left(A \hbox{ or } B\right)=P\left(A\right)+P\left(B\right)-P\left(A \mbox{ and } B\right).

Proved

  \begin{align} P(A\cup B) & =P(A\setminus B)+P(A\cap B)+P(B\setminus A)\\ & =P(A)-P(A\cap B)+P(A\cap B)+P(B)-P(A\cap B)\\ & =P(A)+P(B)-P(A\cap B) \end{align}

 

For example:

  Let’s use Python to show u an example about devil's bones (骰子,不是 魔鬼的骨头哈)

复制代码

A = set([1,2,3,4,5,6])  # the all results of devil's bonesB = set([2,4,3])        # the A event results C = set([4,6])          # the B event results P_B =  1/2P_C =  1/3D = B | Cprint(D)P_D = 2/3print(P_D == (P_B+P_C - 1/6))

复制代码

Output:

{2, 3, 4, 6}

True

 


Let me show u some others :

         P(A)\in[0,1]\, 
         P(A^c)=1-P(A)\, 
         \begin{align} P(A\cup B) & = P(A)+P(B)-P(A\cap B) \\ P(A\cup B) & = P(A)+P(B) \qquad\mbox{if A and B are mutually exclusive} \\ \end{align} 
         \begin{align} P(A\cap B) & = P(A|B)P(B) = P(B|A)P(A)\\ P(A\cap B) &  = P(A)P(B) \qquad\mbox{if A and B are independent}\\ \end{align} 
        P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} \, 

 

If u r tired , please have a tea , or look far to make u feel better.If u r ok, Go on!


  Conditional probability is the probability of some event A, given the occurrence of some other event B. Conditional probability is written:

   P(A \mid B),

   Some authors, such as De Finetti, prefer to introduce conditional probability as an axiom of probability:

  • P(A \cap B) = P(A|B)P(B)

Given two events A and B from the sigma-field of a probability space with P(B) > 0, the conditional probability of A given Bis defined as the quotient of the probability of the joint of events A and B, and the probability of B:  

  P(A|B) = \frac{P(A \cap B)}{P(B)}

  the ①② expressions  are the same. Maybe u can remember one , the other will be easy to be coverted.So I am going to tell an excemple to let u remmeber it(them):

  

  “the phone has a power supply (B), the phone can be used to call others(A).”

  One →  P(A \mid B) : When the phone has a full power supply , u can call others.

  Two →P(B): has   a power supply           

  Three = One +  Two → U can call others about your love with others.

 

do u remember it?

                                                                 

 

Editor's Note

    “路漫漫其修远兮,吾将上下而求索”

 

The Next

            cya soon. We meet a big mess called The total probability and Bayes .

 

      The total probability

      P( A )=P( A | H_1) \cdot P( H_1)+\ldots +P( A | H_n) \cdot P( H_n)

      P(A)=\sum_{j=1}^n P(A|H_j)\cdot P(H_j)

      Bayes (Thomas, 1702-1761,) ; 

       P(A \vert B) = \frac {P(B \vert A) \cdot P(A)} {P(B)}

if u wanna talk with me , add the follow:

 

转载于:https://my.oschina.net/jeffli1993/blog/268636

你可能感兴趣的文章
Data Lake Analytics: 以SQL方式查询Redis数据
查看>>
elasticsearch v6.5.4配置
查看>>
关于分块思想的个人理解
查看>>
手机端车牌号码键盘的vue组件
查看>>
iOS App卡顿监控(Freezing/Lag)
查看>>
云HBase发布全文索引服务,轻松应对复杂查询
查看>>
leetcode394. Decode String
查看>>
我们如何在Linkerd 2.2里设计重试
查看>>
Java程序员月薪达到三万,需要技术水平达到什么程度?
查看>>
cross-env使用
查看>>
web移动端与Hybird开发知识整理
查看>>
用最新的 Alamofire(swift 4.1) (带参数)post方法上传图片到服务器
查看>>
我设计一个phpms框架前的准备
查看>>
小程序--语音合成tts 对接多平台(讯飞,思必驰,百度)
查看>>
Node.js文件上传
查看>>
tp5 加载 extend 类库的方法 (有命名空间和没有命名空间的调用)
查看>>
运营一款电视盒子需要注意什么?
查看>>
网络协议 9 - TCP(下)
查看>>
js中的模块化——commonjs,AMD,CMD,UMD,ES6
查看>>
Java 11 正式发布,这 8 个逆天新特性教你写出更牛逼的代码
查看>>